Rigid dualizing complex for quantum enveloping algebras and algebras of generalized differential operators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L ± Operators and Quantum Enveloping Algebras ∗

The relations between L operators and the generators in the quantum enveloping algebras are studied. The L operators for UqAN and UqG2 algebras are explicitly expressed by the generators as examples. ∗This work was supported by the National Natural Science Foundation of China and Grant No.LWTZ-1298 of Chinese Academy of Sciences. 1

متن کامل

Coloured quantum universal enveloping algebras

We define some new algebraic structures, termed coloured Hopf algebras, by combining the coalgebra structures and antipodes of a standard Hopf algebra set H, corresponding to some parameter set Q, with the transformations of an algebra isomorphism group G, herein called colour group. Such transformations are labelled by some colour parameters, taking values in a colour set C. We show that vario...

متن کامل

Enveloping Algebras of Hom-lie Algebras

A Hom-Lie algebra is a triple (L, [−,−], α), where α is a linear self-map, in which the skew-symmetric bracket satisfies an α-twisted variant of the Jacobi identity, called the Hom-Jacobi identity. When α is the identity map, the Hom-Jacobi identity reduces to the usual Jacobi identity, and L is a Lie algebra. Hom-Lie algebras and related algebras were introduced in [1] to construct deformation...

متن کامل

Differential operators and Cherednik algebras

We establish a link between two geometric approaches to the representation theory of rational Cherednik algebras of type A: one based on a noncommutative Proj construction [GS1]; the other involving quantum hamiltonian reduction of an algebra of differential operators [GG]. In this paper, we combine these two points of view by showing that the process of hamiltonian reduction intertwines a natu...

متن کامل

Virtual copies of semisimple Lie algebras in enveloping algebras of semidirect products and Casimir operators

Given a semidirect product g = s ⊎ r of semisimple Lie algebras s and solvable algebras r, we construct polynomial operators in the enveloping algebra U(g) of g that commute with r and transform like the generators of s, up to a functional factor that turns out to be a Casimir operator of r. Such operators are said to generate a virtual copy of s in U(g), and allow to compute the Casimir operat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2004

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2003.12.001